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The Sahel of Africa is an eco-sensitive zone with complex relations emerging between vegetation pro-
ductivity and rainfall. These relationships are spatially non-stationary, non-linear, scale dependant and
often fail to be successfully modelled by conventional regression models. In response, we apply a local
modelling technique, Geographically Weighted Regression (GWR), which allows for relationships to vary
in space. We applied the GWR using climatic data (Normalized Vegetation Difference Index and rainfall)
on an annual basis during the growing seasons (June—September) for 2002—2012. The operating scale of
the Sahelian NDVI—rainfall relationship was found to stabilize around 160 km. With the selection of an
appropriate scale, the spatial pattern of the NDVI-rainfall relationship was significantly better explained
by the GWR than the traditional Ordinary Least Squares (OLS) regression. GWR performed better in terms
of predictive power, accuracy and reduced residual autocorrelation. Moreover, GWR formed spatial
clusters with local regression coefficients significantly higher or lower than those that the global OLS
model resulted in, highlighting local variations. Areas near wetlands and irrigated lands displayed weak
correlations while humid areas such as the Sudanian region at southern Sahel produced higher and more
significant correlations. Finally, the spatial relationship of rainfall and NDVI displayed temporal variations

as there were significant differences in the spatial trends throughout the study period.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The normalized difference vegetation index (NDVI) is the most
widely used surrogate for vegetation greenness in a wide range of
studies spanning regional to global scales (Anyamba and Tucker,
2005; Vrieling et al., 2013). The variability of NDVI is a function of
prevalent climatic conditions such as rainfall and temperature, and
this relationship is well established at various spatial and temporal
scales (Fabricante et al., 2009; Udelhoven et al., 2009; Wang et al.,
2010). Rainfall is a particularly important predictor of vegetation
distribution in the transition zone from humid to arid environ-
ments (Martiny et al., 2006; Huber et al., 2011). In most studies that
characterize the relationship between vegetation and rainfall, NDVI
is modelled as a function of rainfall using global linear models
calibrated using ordinary least squares (OLS) regression methods.
However, the NDVI-rainfall relationship varies spatially and
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temporally depending on land cover, soil type, vegetation compo-
sition and structure, microclimatic conditions and human impact
(Propastin et al., 2008). As such, models that assume stationarity
may fail to capture the true nature of the relationship between
variables making the validity of their results questionable.

The Sahel region of Africa comprises various land cover cate-
gories and complex ecosystems, and is known to be sensitive to
environmental change (Nicholson et al., 1990; Huber et al., 2011).
The Sahel underwent a protracted drought from the mid-1960s
through the mid-1980s in which there were several humanitarian
crises. Eklundh and Olsson (2003) reported a recovery from this
period and observed increases in satellite-derived NDVI from the
mid-1980s onwards. This increase in landscape greenness was
called the “greening of the Sahel” (Olsson et al., 2005), and was the
result of increases in herbaceous and tree cover (Dardel et al., 2014;
Brandt et al., 2015). The primary mechanism behind this observed
greening is the increase in rainfall (Hickler et al., 2005), and, to a
lesser extent, improved land use activities (Olsson et al., 2005; Lee
et al,, 2015).

Please cite this article in press as: Georganos, S., et al., Examining the NDVI-rainfall relationship in the semi-arid Sahel using geographically
weighted regression, Journal of Arid Environments (2017), http://dx.doi.org/10.1016/j.jaridenv.2017.06.004



mailto:stefgeorganos@gmail.com
www.sciencedirect.com/science/journal/01401963
http://www.elsevier.com/locate/jaridenv
http://dx.doi.org/10.1016/j.jaridenv.2017.06.004
http://dx.doi.org/10.1016/j.jaridenv.2017.06.004
http://dx.doi.org/10.1016/j.jaridenv.2017.06.004

2 S. Georganos et al. / Journal of Arid Environments xxx (2017) 1-11

The majority of studies that examine the Sahelian NDVI-
rainfall relationship are based on linear per-pixel time series
analysis of NDVI and rainfall. However, the spatially variable
relationship between these parameters has not been explored in
depth. As such, this study attempts to model the complex re-
lations between NDVI and rainfall by using a local non-parametric
regression method known as geographically-weighted regression
(GWR) (Fotheringham et al., 2003). GWR is commonly used in
human geography (Fotheringham et al., 2001; Hu et al., 2012) and
has recently become popular in ecology (Wang et al., 2005;
Propastin et al., 2008; Gaughan and Waylen, 2012). GWR allows
the relationships between dependent and explanatory variables
to vary over space and directly deals with non-stationarity. The
outputs of this method are useful for descriptive purposes and to
detect areas of model misspecification or variability that would
otherwise be lost in a global model. Thus, the objective of this
study is to explore the NDVI — rainfall spatial relationship in the
Sahel between 2002 and 2012, with a focus on vegetative
growing season. The extremities of this period were chosen
because of the large difference in total rainfall received in the
region —2002 was a dry year and 2012 was a wet year (Fig. 1).
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Fig. 1. Annual sums of monthly NDVI and monthly rainfall layers between 2002 and
2012 based on the GIMMS and CHRIPS datasets, respectively.

This enables the analysis of temporal variability in the spatial
relationships, and the detection of areas where the Sahel is
particularly sensitive to variations in rainfall by mapping the local
regression results.

2. Study area

The Sahel is a 3.3 million km? region that separates the hyper-
arid Sahara Desert in the north from the humid Sudano-Guinean
zone in the south. The majority of the rainfall is distributed over
2—4 months during the summer growing season (June—Sep-
tember) whereas rainfall during the rest of the year is negligible
(Brandt et al., 2015). The dominant land cover categories of the
Sahelian belt based on the Global Land Cover (GLC) SHARE classi-
fication (Latham et al., 2014) are shown in Fig. 2. Most Sahelian
plants have the C4 photosynthetic pathway, and are acclimatized to
warm, arid environments. These are primarily composed of her-
baceous vegetation (Fig. 2). The canopy cover ranges between 3 and
10%, and is predominantly composed of trees that have the C3
photosynthetic pathway.

3. Material and methods
3.1. Normalized difference vegetation index — NDVI

The independent variable in this study is the NDVI and is
computed as:

NIR — RED

NDVI =g + RED

(1)

where, NIR and RED denote spectral reflectance in the near infrared
(800—1000 nm) and red (620—750 nm) portions of the electro-
magnetic spectrum. The index ranges between —1 (water bodies)
and 1 (dense vegetation). We utilized NDVI derived from the
Advanced Very High Resolution Radiometer (AVHRR) instrument
on board the National Oceanic and Atmospheric Administration
(NOAA) polar orbiting satellites. The dataset is the third generation
(3g) NDVI product developed by the Global Inventory Monitoring
and Modelling System (GIMMS) project. The data are provided as
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Fig. 2. Land cover of the Sahel based on the GLC-SHARE classification scheme from the Food and Agriculture Organization of the United Nations.
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biweekly NDVI images at an 8 km spatial resolution and include
corrections related to atmospheric change, satellite sensor decay
and orbit drift (Pinzon and Tucker, 2014). A recent intercomparison
of NDVI datasets by Tian et al. (2015) found that the GIMMS-3g
possesses the highest temporal consistency and is appropriate for
trend analysis. The biweekly NDVI data were converted into
monthly values using the maximum value composite method to
reduce cloud disturbance and increase the overall quality of the
dataset (Fensholt and Proud, 2012). NDVI was integrated (iNDVI)
over the growing season (June—September) for each year between
2002 and 2012 to provide an annual measure of growing season of
vegetation productivity.

3.2. Climate hazard InfraRed precipitation with stations (CHIRPS)

The CHIRPS (v2.0) project provides rainfall datasets at a 0.05°
(~5 km) resolution based on a conjunction geostationary infrared
satellite rainfall estimates and rain gauge observations that are
interpolated to produce robust precipitation grids (Funk et al,
2015). Monthly grids over the 2002—2012 study period were
downloaded (http://chg.geog.ucsb.edu/data/chirps/) and averaged
to an 8 km resolution to match the NDVI data. Then, growing season
(June—September) was summed on an annual basis between 2002
and 2012 as the independent variable (Fig. 3).
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4. Modelling methods
4.1. Geographically weighted regression

The Geographically Weighted Regression (GWR) is a local
modelling technique appropriate for spatial data with some degree
of spatial dependence (Kalogirou, 2003). The aim of GWR is to
examine the existence of spatial non-stationarity in the relation-
ship between a dependent variable and as set of independent
variables. A complete presentation of the GWR method is available
in the GWR book by Fotheringham et al. (2003). This section pro-
vides a short description of the method.

It can be argued that the GWR is a spatial disaggregation of the
traditional regression model. In a simple traditional statistical
model, we try to explain a phenomenon using one explanatory
variable. Such a model can be formally written as follows:

Yi= a+ bx;+ ¢, i=1:n (2)
where y is the dependent variable denoting the phenomenon, x is
the independent variable denoting the explanatory factor, ¢ is the
error term, a and b are the parameters to be estimated, and n is the
number of samples that correspond to spatial locations. For
simplicity, we call this model “global”. When we calibrate the above
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Fig. 3. Integrated NDVI (iNDVI) over the growing season for a) 2002, b) 2012, and cumulative rainfall over the growing season for ¢)2002, d) 2012.
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model with the Ordinary Least Squared (OLS) regression, a and b
are estimated in such a way that the sum of square of the model
residuals are minimized (Brunsdon et al., 1998). Moreover, the re-
siduals should satisfy the criteria of spatial independence and ho-
moscedasticity. In OLS, the estimation of these parameters can be
described as a set of matrix equations. For example, we can esti-
mate the parameter b as shown in Equation (3) below:

= (XTX>71 xTy (3)

where b is the estimate of b; X is the vector of the values of the
independent variable; and Y is the vector of the values of the

dependent variable. The parameter estimate b, indicates the rate of
change in the dependent variable with a unit change in the inde-
pendent variable and is stationary across the study area. In the
empirical example of this paper, the above parameter estimate
refers to the relationship between the NDVI and rainfall.

GWR extends Equation (2) by allowing local parameters to be
estimated. To achieve this, it takes into account the locations of the
observations. The local model can be formally written as follows:
yi= a(u,-,v,-) + b(ui,vi)xi + &, i=1:n (4)
where (u;,v;) refer to the coordinates of location i, and a(u;,v;) and
b(u;,v;) are the local parameters to be estimated particularly for
location i. To achieve this, a sub-model around each observation
location is defined and fit taking into account a subset of the
original observations. The study area of the sub-model is a neigh-
bourhood defined by a weighting scheme in which nearby obser-
vations have a non-zero weight. Typically, the number of sub-
models equal the number of observations. By computing a local
parameter estimate for each observation of the study area, it is
possible to examine the potential variability of the relationship
between the dependent and independent variable. Consequently,
Equation (3), can be rewritten as:

b, i) = (X" W w)X) " XTW(wg )y (5)

where, b is a vector of local estimates of b(u;,v;) and W(u;, v;) is a
weights matrix that denotes the weights of the observations for
regression point i (sub-model i). These weights are defined by a
continues function of distance. Observations closer to the location
of regression point i have higher weights, while those further away
have lower weights.

The type of weighting is important in GWR because it defines
the neighbourhood. The most commonly used weighting functions
are either Gaussian or Gaussian-like or bi-square. For example, a
Gaussian-like weighting function proposed by Fotheringham et al.
(2003) is:

wj = exp| — 1/2(d;j/b)’] (6)

where wj; is the weight for observation j that refer to the sub-model
for location i; dj; denotes the Euclidian distance between j and i; and
b is the size of the neighbourhood.

However, most GWR software uses the bi-square function that is
written as follows:

2
wy = [1— (dy/b)?]
= 0 elsewhere

In the GWR terminology, the neighbourhood is called “kernel”
and the maximum distance away from the regression location i is

called “bandwidth”. It is possible to have two types of kernels, a
“fixed kernel” where the neighbourhood is defined by a circle
whose radius is the bandwidth, and an “adaptive kernel” where the
neighbourhood is defined by the number of nearest neighbours.
The former is more appropriate for data that are evenly distributed
across space (such as gridded data) and the latter is more appro-
priate for data with locations that are dense is some areas and
sparse elsewhere (such as the centroids of administrative bound-
aries). Each type o kernel uses a different weighting scheme. Both
weighting schemes were used in this study.

The benefit of a continuous weighting function is that it allows
for the estimation of parameters at locations other than the loca-
tions of the observations. The bandwidth size describes the dis-
tance limit at which nearby observations are taken into account for
fitting a sub-model. If the bandwidth is too large, GWR would turn
into the global model since all observations would be used at each
sub-model, thus hindering meaningful parameter variation and
increasing model bias. On the contrary, if the bandwidth is too
small the parameters will be less biased but will depend on only in
a few observations and will have increased variance in their esti-
mates and large standard errors due to low degrees of freedom
(Propastin, 2009).

4.2. Model comparison

The Akaike Information Criterion corrected for small sample
sizes (AlICc) (Akaike, 1974) was used to compare the relative model
performance while accounting for model complexity and differ-
ences in degrees of freedom. An F-test based on analysis of variance
(ANOVA) was computed to assess the significance of the
improvement:

RSS gwr / D Fgwr
RSSgim / DFyim

where, RSS_gwr is the residual sum of squares for a GWR model,
RSS_glm is the residual sum of squares for a global model, and
DF_gwr and DF_glm are the degrees of freedom for GWR and the
global model, respectively. The coefficient of determination (R?)
was calculated as a measure of the amount of variance explained by
the model. Root mean square error (RMSE) was calculated to
evaluate the performance of each model output. RMSE calculates
the square root of the variance and smaller values denote better
model performance. An RMSE of 0.0 indicates perfect simulation of
the input data.

(8)

4.3. Measuring spatial non-stationarity and autocorrelation

The Stationarity Index (SI) proposed by (Osborne et al., 2007)
was used as an approximation of spatial non-stationarity. The SI is
calculated as:

_iqrawr
SI = S 9)

where SI is the stationarity index, iqr_gwr is the interquartile range
of GWR coefficients, and SE is the standard error of a coefficient
from a global model. Values less than 1 indicate stationarity at that
scale, implying that the relationship has stabilized. The SI has often
been used to study the scale dependency of non-stationarity be-
tween ecological variables. Calculating SI at incremental scales il-
lustrates the difference between the observation and intrinsic
scale-dependence of variables, thus aiding in the selection of a
reliable bandwidth. Finally, Moran's I (Moran, 1948) was used to
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assess the degree of spatial autocorrelation of the data by con-
structing spatial correlograms at incremental spatial scales.

4.4. Data processing and software

The gridded NDVI and rainfall data were converted to vector
format in order to use the GWR tool in ArcGIS 10.3, the Ictools
package (Kalogirou and Kalogirou, 2015) in the open source sta-
tistical software R 3.1.2 (R Core Team, 2016), and the GWR4 soft-
ware package (Nakaya et al, 2009). Random sampling was
performed to encapsulate 30% of the dataset corresponding to
approximately 10,000 sample points for each year.

5. Results
5.1. Scale dependency of the relationship

The relationship between NDVI and rainfall in the Sahel during
the growing season was scale dependent. The pattern was more
homogenous as the bandwidth broadened and incorporated in-
formation from locations afar, thereby smoothing the regression
coefficients and bringing them closer to those of a global model. On
the contrary, with smaller bandwidths very detailed patterns were
produced at the cost of increased standard errors. The SI for both
2002 and 2012 (Fig. 4) suggests that scale-dependence of non-
stationarity was detectable by varying the scale of the analysis. In
2012, the SI was higher for small bandwidths than the values for
2002, but with earlier stabilization. Moreover, the index values
were not stationary (SI < 1) in any of the examined spatial scales,
which implies a strong non-stationary process in the data. The SI
slopes declined abruptly with an increase in bandwidth that flat-
tened out around 160 km, implying that this is the intrinsic scale of
the Sahelian NDVI-rainfall relationship, ie. the minimum
geographical area with which a reliable relationship for can be built
for the entire region. This could be interpreted as the size of a
landscape unit that describes the natural arrangement of the phe-
nomenon where variations of non-stationarity could be incorpo-
rated, while removing unnecessary bias and noise in the model.

5.2. Model comparison

The R? for GWR was higher than OLS for all years under exam-
ination (Fig. 5). OLS models are unstable in their predictions while
140
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GWR deviates less over the study period. The R? values range be-
tween 0.60 and 0.70 for the OLS models, and between 0.84 and 0.88
for the GWR models. The ANOVA-based F-test shows that GWR
produced statistically significant improvement over the OLS
models in all years (p < 0.01). GWR explained more of variance and
lowered AICc values, which accounts for changes in model
complexity and degrees of freedom (Supplementary Table 2).

5.3. Spatial patterns of the NDVI — rainfall relationship

There is significant spatiotemporal variability in the strength of
the NDVI-rainfall correlation throughout the Sahel (Fig. 6). The local
fits are lower in wetlands around Lake Chad, and the Niger River
near Mopti, Mali, as well as in the central and southwest parts of
the Sahel. The influence of rainfall on NDVI variability in the
growing season is low and perhaps other ecological or land use
factors have stronger impact in these areas. High correlations
(R? > 0.5) were found in the western Sahel (parts of Mauritania and
Senegal) and the eastern Sahel (parts of Chad and most of Sudan)
suggesting that rainfall is a very potent determinant in these areas.
The local fits perform better in the dry year of 2002 than the
relatively wet 2012, although the general clustering patterns are
similar in both years.

The vast majority of the rainfall coefficients are positive, sug-
gesting that an increase in rainfall relates to an increase in NDVI.
However, the rate of increase differs significantly throughout the
Sahelian belt (Fig. 7). The strength of the associations is higher in the
growing season of 2002 than of 2012. In 2002, all local t-value es-
timates were statistically significant (t = > 1.96 or t = < —1.96).
Comparing this to the land cover map, the significance of the t-
values appears to be stronger in the transition zone between the
bare soil and savanna. Although rainfall coefficients were lower in
most of the Sahel in 2012 than 2002, a seemingly large cluster
extending over Sudan had surprisingly high values that surpassed all
the coefficient values of 2002. These findings suggest that NDVI was
particularly sensitive to variations in rainfall over that area in that
year. Instead of forming a spatially continuous sensitive geograph-
ical transitional zone, the Sahel forms clusters (Fig. 8) that operate as
transitional passages between humid and hyper-arid environments,
and their size being dependent on the amount of rain received.

Fig. 9 illustrates the linear temporal trends of rainfall coefficients
between 2002 and 2012. The influence of rainfall as a local pre-
dictor of NDVI exhibits a negative trend in most of the western
Sahel, while the trend is positive in the central regions of the re-
gion. The region of Kordofan in central Sudan displays a cluster of
strong negative trends at its southern portion while high positive

Please cite this article in press as: Georganos, S., et al., Examining the NDVI-rainfall relationship in the semi-arid Sahel using geographically
weighted regression, Journal of Arid Environments (2017), http://dx.doi.org/10.1016/j.jaridenv.2017.06.004




6 S. Georganos et al. / Journal of Arid Environments xxx (2017) 1-11

20°00'W 10'I7I’0’W 0°0'0" |l1'(=’0'E 20°00"E M'IITO"E 40° IIN!'E

20'0I'B"N
T
20°00°N

Local R Squared
0.02-0.22
0.22-0.37
0.37-0.48
0.48-0.57
0.57-0.66
0.66-0.74
0.74-0.84

15'(%‘0"N
15°00"N

T
10°00"N

20°00W 1000w oo 10°00°E 2000 000 40°00E
Local R Squared
0.02-0.22
0.22-0.37
0.37-0.48
0.48 - 0.57
0.57-0.66
0.66-0.74
0.74-0.84
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trends are found surrounding that region.
5.4. Predicted patterns

The scatterplots of the observed and predicted values are pre-
sented in Fig. 10. The global models were not consistent, under-
estimating high values of NDVI and overestimating low values. This
is to be expected, since a constant set of parameters was used to
capture a relationship over a very large area with high spatial
heterogeneity. The local modelling approach managed to produce
more accurate estimates by taking into account local characteristics
and incorporating sample coordinates (Supplementary Table 2).

Figs. 11 and 12 show observed and predicted spatial patterns of
NDVI for 2002 and 2012, respectively. The OLS model produced
more generalized patterns that hindered local variability in the
NDVI values across the Sahel (RMSE = 0.30 in 2002, RMSE = 0.39 in
2012). Similarly, predictions produced by combining OLS models in
different land cover classes produced only slightly better results
(RMSE = 0.27 in 2002, RMSE = 0.35 in 2012). Both models dis-
played the actual gradient of lower NDVI values in the north and
higher values to the south. However, the GWR model had higher
precision because it took into account the spatial variation in the
NDVI—rainfall relationship and regional information (RMSE = 0.18
in 2002, RMSE = 0.24 in 2012).

6. Discussion

The results demonstrated that the NDVI—rainfall relationship is

Q

not stationary throughout the Sahel during the growing season in
the years under examination. This non-stationarity was indepen-
dent of land cover (Supplementary Table 1) as suggested by the
comparison of standard deviations of global linear model with the
interquartile range of GWR (Supplementary Tables 3 and 4). Our
findings suggest that rainfall is a significantly more potent predic-
tor of NDVI once spatial non-stationarity can be incorporated into
the regression model. The relationship was positive across most of
the region, however, negative or very weak relationships were
observed in some locations. Moreover, the significance of the as-
sociation varied dramatically through space. GWR functions as a
continuously varying detector of geographical relationships by
incorporating local information with significantly improved per-
formance over the global models (Supplementary Table 2),
explaining higher variance, and effectively reducing autocorrela-
tion in the residuals (Supplementary Figs. 1 and 2). The underlying
mechanism is that GWR can take into account variability within
land cover classifications, accounting for species composition and
distribution, and other factors that have a strong local component
such as soil type or human disruption of ecological communities
and locally unique climatic conditions (Propastin, 2009). These
local variations demonstrated that the spatial patterns of NDVI are
better correlated with rainfall in some parts of the Sahel than
others. Herrmann et al. (2005) suggested that rainfall is the
dominant determinant of vegetation growth in Sahel, but other
factors such as human interference could also play a role. In this
study, the southern parts of the Sahel generally exhibited weaker
correlations (Fig. 7), for example the wetlands around Lake Chad.

Q.
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Fig. 10. Scatter plots of observed and simulated NDVI for the growing season. a) OLS model in 2002, b) Combined OLS models in separate land cover categories in 2002, c) GWR
model in 2002, d) OLS model in 2012, e) Combined OLS models in separate land cover categories in 2012, f) GWR model in 2012. RMSE refers to the Root Mean Square Error.
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Fig. 11. Observed and Predicted spatial patterns of NDVI in 2002. a) Observed patterns, b) Combined OLS models in separate land cover categories, c) Global OLS model, d) GWR

model.

This is probably due to the abundance of water and different irri-
gation practices (Fox and Rockstrom, 2003) coupled with increased
human activity.

Hameed and Bannari (2016) demonstrated that the temporal
correlations between NDVI and rainfall in semi-arid Sudan are
highly correlated (R* = 0.60—0.80). These findings agree with the
GWR results suggesting that spatially explicit modelling is an
effective alternative to global models. The flexibility of the pro-
posed method could be applied to modify rain use efficiency (RUE,
Fensholt and Rasmussen (2011)) analysis by incorporating local
characteristics. We suggest the use of the slope coefficients of GWR
models as a spatial proxy for RUE, which will produce a localized
perspective on ecosystem degradation rather single per-pixel
analysis in a global model. The strong negative trends in the clus-
ter located in Kordofan (Fig. 9) could be linked with soil degrada-
tion (Elgubshawi, 2008) or a change in grazing practices. The
negative trends in most of the Western Sahel can be attributed to
increases in woody cover (Brandt et al., 2016) as woody vegetation
has been shown to be resistant to intra- and inter-annual variability
of rainfall and soil moisture (Huber et al.,, 2011).

The relationship between vegetation and climatic variables such
as rainfall has been shown to be scale dependent (Propastin et al.,
2008; Zhao et al, 2015), and the selection of an appropriate
bandwidth in GWR is crucial (Gao and Li, 2011). The bandwidth

choice is a trade-off between variance in the local estimates and
bias in the model. Usually, this decision is based on AlCc, however,
with large sample sizes AICc can suggest optimality in models with
extremely small bandwidths, inflated R? values and large standard
errors (Propastin et al., 2008). This hinders meaningful inferences
and inserting a large amount of noise in the outputs. In this study,
AlCc was suitable for comparing OLS and GWR after the appropriate
bandwidth was selected based on SI. However, it must be noted
that in bivariate models with very large sample sizes (n > 50,000), it
is very likely to encounter strong collinearity problems in the local
explanatory terms. Although smaller bandwidths can be useful for
exploratory purposes, it is strongly suggested that covariance
matrices, local correlation coefficients, and condition indexes be
applied before selecting a bandwidth, even when it is suggested by
measures such as AICc. An alternative to AICc for large sample sizes
is to employ stricter measures for bandwidth selection, such as
Bayesian information criterion, which penalizes smaller band-
widths more and could be of potential use in further research
(Nakaya, 2001).

The computation of SI at incrementing spatial scales provided
important information with regard to the scale dependency of NDVI
and rainfall in the Sahelian growing season. The two years that
were selected for detailed examination showed that SI stabilized at
roughly 160 km (Fig. 4) and the regressions constructed at that
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Fig. 12. Observed and Predicted spatial patterns of NDVI in 2012. a) Observed patterns, b) Combined OLS models in separate land cover categories, c¢) Global OLS model, d) GWR

model.

scale were more reliable and stable. This is due to the fact that the
condition indices and local correlation coefficients did not suggest
any spurious local correlation in the coefficients even at the cost of
introducing more bias than smaller bandwidths. Other studies in
ecological transition zones similar to the Sahel found that the sta-
bility scales were found to be between 180 and 500 km (Gao et al.,
2012; Zhao et al., 2015). It has to be noted that in those studies
annual comparisons were performed, while in this study the focus
was on the growing season. By analysing the data only in the
months when most of the rainfall occurs and vegetation growth
takes place, much of the unnecessary noise from the NDVI signal in
the dry season can be eliminated.

7. Conclusion

GWR allows regression parameters to vary through space, pro-
ducing different temporal and spatial patterns regarding the
strength of the correlation and the significance of the relationship.
By mapping the local diagnostics, the spatial heterogeneity and
non-stationary of the NDVI-rainfall relationship are illustrated.
Local coefficient values describe how well local models fit the ob-
servations and the nature of the relationships. This study examined
the spatial patterns of NDVI and rainfall in the Sahel during the

growing season between 2002 and 2012. The results validated our
hypothesis that GWR is a viable alternative to OLS modelling in
heterogeneous areas that are sensitive to environmental change.
The results show that parts of the study area were particularly
sensitive to variability in rainfall formed large clusters that con-
nected humid and arid climatic zones. In these areas, rainfall ap-
pears to be the dominant determinant in understanding the
distribution of vegetation. Moreover, regions mainly located
around wetlands exhibited weak relationships with rainfall, indi-
cating the need for the incorporation of additional variables to
explain variations in NDVI. The GWR approach produced better
predictions, lower autocorrelation in the residuals and highlighted
interesting local variations. As such, GWR is strongly suggested as
both an explanatory and exploratory method in spatiotemporal
analysis and environmental modelling where spatial constancy in
relations between variables is questionable.
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